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Recently, a simple model of evolution has been proposed by Bak and Sneppen [Phys. Rev. Lett.
71, 4083 (1993)]. This model self-organizes into a critical state for nearest- and random-neighbor
interactions. The Bak-Sneppen (BS) model has no explicit time scale, because time steps are always
identified with an evolutionary step. Therefore, we introduce at each time step a local stochastical
update rule. Hence it is possible to observe time steps in which no species are removed from the
system. In the following, the durations of time steps in which no further evolution occurs are called
interevent intervals. We study a random-neighbor version of the model and derive the steady-state
distribution of the fitnesses. The distributions are the same for synchronous and asynchronous
updating rules and resemble the solutions obtained for the mean field BS model. We give an
interpretation of the modified BS model as a neural network with random connections. For a
concrete choice of the stochastical updating rule, we derive the distribution of the interevent or
interspike intervals. It turns out that for parallel updating we get a power law decay, whereas in the
case of random sequential updating the distribution is simply an exponential in the limit N — oo.
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N is the system size. All analytical results are supported by numerical simulations.

PACS number(s): 87.10.+e, 05.40.+j

I. INTRODUCTION

Based on morphological observations, it has been spec-
ulated that the evolution of life is concentrated in very
rapid events of speciation [1] rather than in a grad-
ual manner as supposed by Darwin. The fitness of
most species hardly changes and fluctuates only mildly.
This concept is called punctuated equilibria. Intermittent
bursts of evolutionary activity are separated by inactive
periods or stasis. Observations of Raup [2] suggest that
extinctions of species are episodic on all scales. Therefore
it has been conjectured that the ecology of interacting
species has evolved to a self-organized critical state [3,4].
Considering the NKC model for special parameters of
K and C, it was found that the time for the system to
reach Nash equilibrium decays algebraically [3]. (IV is the
number of genes in a genotype, K is the number of other
genes in the same genotype to which one gene is con-
nected, and C is the number of genes in other genotypes
to which one gene is connected).

Recently a simple model of evolution was introduced
by Bak and Sneppen that reveals indeed self-organized
criticality [5]. Their model is defined as follows. The
ecology consists of N species on a d-dimensional lattice.
Each species is assigned a random fitness 0 < z; < 1 cho-
sen from a uniform distribution P(x;) = ¥(1 — x;)¥(=;:),
where ¥ is the step function. At each step the site with
the lowest fitness z; and its 2d + 1 nearest neighbors are
changed to new random numbers &;, which are drawn
from a uniform distribution P(§;). After a number of
steps the system reaches a dynamical steady state. Bak
and Sneppen measured the distances r on the lattice be-
tween subsequently active sites and found for the one-
dimensional nearest-neighbor model a power-law decay
for the distribution P(r) = r~315+0.05  In the random-
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neighbor version of the Bak-Sneppen (BS) model, where
the 2d + 1 neighbors are chosen anew at each step, the
steady-state distribution of the mean fitness can be de-
rived analytically [6]. One obtains a step function with
the discontinuity located at 1/K, where K —1 is the num-
ber of neighbors. An avalanche is defined in this model
as follows. If the smallest fitness x i, falls below a value
g, with 0 < ¢ < 1, then the number of subsequent steps
needed for T,,;, to exceed ¢ again is defined as the length
of the avalanche. If q is exactly 1/K an avalanche can be
identified in the limit N — oo with the length of a tree
in a critical branching process and the distribution II(l)
of the lengths [ scales as II(l) = [=3/2 [7]. For K = 2
this can be explained in terms of a one-step process. For
N — oo the total number St of sites ¢ with fitness x;
below 1/2 at step t performs simply a symmetrical ran-
dom walk. In the case K = 2 we see that S**! = §*
with probability 0.5, because there are two possibilities
that exactly one of the two new random values is smaller
than q. With probability 0.25 both new uniform dis-
tributed random values are below or above ¢ and we ob-
tain S*t! = St 4+ 1 or St+! = St — 1, respectively. There-
fore the considered avalanches are in fact the recurrence
times of the renewal process St. For the random walk
it is well known [8] that the number of steps needed to
reach the starting point again scales with the exponent
—3/2. In [9] the finite-size effects are calculated, which
cut off the power-law behavior. If ¢ < 1/K the recur-
rence times decay exponentially, whereas for ¢ > 1/K it
is unlikely that S* returns to zero. The critical behavior
of the recurrence time occurs only for ¢ = 1/K.

The BS model does not describe evolution on a physi-
cal time scale, because an update step always corresponds
to a mutation of the species with the smallest fitness and
its neighbors. This implies that we would observe a con-
stant extinction intensity in morphological data and that
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there will never be periods in which the system does not
change. In contrast to this, the biological extinction in-
tensity exhibits a large variability [2]. Therefore we ex-
tend the BS model by introducing a local stochastic vari-
able 7;, which simulates unspecified degrees of freedom
that can lead to an extinction of a species i. Hence we
get a local mutation or update probability for each site at
each time step. The update probability depends on the
fitness of the considered species. In Sec. II we solve the
random-neighbor version of our model for a general dis-
tribution A(7;), which is normalized. If n; is larger than
the fitness z; of species %, species ¢ and its neighbors will
be mutated. Giving that updating rule, it is more likely
that a species with high fitness will survive and a species
with low fitness becomes extinct and is replaced by a
- new species. So there is no need to mutate in every step
exactly the species with the lowest fitness value. Fur-
thermore, it is possible to observe time steps in which no
evolution takes place. Therefore the system evolves in
real time and not simply in mutation steps. Henceforth
we can measure the distribution of the interevent inter-
vals within the evolving system, which is interrupted by
bursts of adaptation or speciation as proposed in [1].

There are hints that processes in the brain exhibit crit-
ical behavior [10]. We propose in Sec. III a simple neural
network with random connections, which is related to our
mean-field model. In this case, 7; obeys the Boltzmann
distribution A(7;) = Be~P". The distribution of the in-
terevent periods or interspike intervals is calculated for
this model. In the case of parallel update we observe
power-law behavior with the exponent —1. The cutoff of
the algebraic decay depends, in the limit N — oo, on the
parameter 3 and the connectivity K. For the sequential
updating rule the distribution of the interevent intervals
decays exponentially. In Sec. IV we discuss several con-
clusions and summarize our results.

II. MODEL

We consider N sites with real fitnesses z; € [0, 1]. If the
fitness x¢, where ¢ denotes time, is smaller than 7}, then
in the next time step z! changes to zi*! = ¢!, where £ is
a new uniformly distributed random value between 0 and
1, with the probability distribution P(&;) = 9(&;)9(1 —
&;). ¥ denotes the unit step function and 7; is a stochastic
variable, which models all not explicitly known degrees of
freedom of the system and is chosen anew at every time
step from a normalized distribution A(n;), [ dn: A(m:) =
1, for each site. We denote the number of sites that
change their fitness due to the fact that zf < ! per unit
of time by L. Together with a site ¢ that is changed in
this fashion, its K — 1 neighboring sites, denoted by {r;},
will also obtain new randomly chosen fitnesses &,, that
are independent of the actual fitness z% . Thus there are
two causes for a change of fitness.

In contrast to the BS model, we have to deal only with
a local update rule. There is no need to select the small-
est fitness. On the other hand, time steps are possible in
which no update occurs. If we consider parallel updat-
ing, more than one site can be mutated directly, i.e., via

K. SCHMOLTZI AND H. G. SCHUSTER 52

z! < n! in a single time step. Hence coevolution occurs in
parallel at many different sites within the whole system.
In this paper we analyze a random-neighbor model,
where for each species ¢ we choose K — 1 neighbors at
random in each time step. This is usually called “an-
nealed” disorder instead of “quenched” disorder for which
the randomly chosen neighbors are the same for all time
steps. Note that if L sites are changed via z; < 7;, a total
number of LK sites are involved in the update process.
The equations of motion for the process are given by

g if O >0
2+ = { Shelh (1)

1

where

of=1- [ (1-9%) - (2)

keM}

9% is an abbreviation for 9(n}, — z) and M} denotes the
set of {z} with its neighbors {r;} at time step . From
Eq. (2) it follows that ©; itself is a unit step function.

We consider synchronous and asynchronous updating
rules for our model. For asynchronous updating only one
randomly chosen fitness z! is compared to 7! per unit of
time. Note that this means that altogether K sites, i.e.,
i and its K — 1 neighbors, are updated instantaneously.
For synchronous or parallel updating we compare all z¥’s
with their related n!’s at each time step.

For both update rules we derive the steady-state dis-
tribution p(z) in the mean-field approximation. We
denote the joint probability distribution at time ¢ by
P*(zq,...,zy) = P*(F) and the conditional transition
density for the system to be at & if it was previously
at & by K(Z|Z'). The time evolution of the system is
given by

PHY(E) = / di' K (2|7 ) PY(&), (3)

where

K(Z]&') = <H 6(z; — £O; — (1 - @2))> (4)

i 34
and () £.7 is an abbreviation for the annealed average with
the distributions P(€) = [, P(&) and A(7) = [T, A(m),
over a random neighborhood and in the case of sequential
updating over the randomly chosen site ;. Now we use

the fact that any function f(z), with = 0,1, can be
decomposed as f(z) = f(0)(1 — z) + f(1) = and obtain

K(z|Z') = <H {8(z: — &)O] + &(x; — z})(1 - 92)}>
i £

(5)

A. Asynchronous updating

Under the assumption that only one site could be up-
dated directly per time step, i.e., a total of K sites could
change their fitness, Eq. (5) reduces to
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K(&|&') = <H 6(zk — mk)>
k &7

+<19: 5(:3,; - 52) H 6(“"7’.‘ - g"i)
{ri}

x [[ é(zx — =) — 9 Hé(zk—zk)>—. .
&7

kg M;
(6)

Note that transitions in which more than one and fewer
than K sites get new random values cannot happen.
Equation (6) is valid in the case of asynchronous up-
dating for any distribution A(7;), because only one site
is selected for comparison. But if we focus on parallel
updating it is possible that more than K sites change in
a single time step. Therefore, in order to apply the re-
sults we will derive from Eq. (6), we must restrict the
choice for the updating function A(rn;). We will discuss
this point later in this section.

If we take the average over []; A(7;) and introduce

B(z;) = f dn; A(n;) we obtain

= [[ 6 — =)
k

<B(:c)6 z; — &) [[ 6z - &)
{r:}

x H 6(zx — a:k)>

kgZM;

- <B(mz> 156 —zx>> . (7)
K 3

Since (6(z — €))¢ = 1 we obtain
(@) J] o(er — k)

K(&&) =[] 6(zx — k) + <B
k kZM;

(1) []6(er — wk)>- (8)
k

By using the mean-field ansatz that P(Z) factorizes,
we derive in Appendix A the master equation for the
reduced density pt(z), which is defined as

N N
_ _]1\7 ;/df&(w — 2)PY(&) = -lel;ﬁ(z), 9)

and obtain

P (z) = p(2) — - B@P (@) — Tt CY(BYpt(a)
+3:C(B) +0 (1/N?), (10)

where C* is a functional of B(z) and p*(z)
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ctB,p') = [ do B(e)p'(z). (11)

C" is the probability that the fitness x; for a randomly
selected site ¢ is smaller than 7; at time step t. By ne-
glecting terms of O(1/N?) and because C is independent
of ¢, we can calculate from Eq. (10) the equilibrium
distribution for p(z) = lim;_, . p*(z) and obtain

K/(K - 1)
P(®) = TTB@) /(K - 1)OB,7) (12)

This is the main result of this section.

B. Synchronous updating

As mentioned above, Eq. (6) and therefore the master
equation (10) will be valid for parallel updating only if no
more than one site is updated by a direct mutation per
unit of time. Now C* measures the mean activity of all
sites that are changed via z! < n!. Roughly stated, in the
case of parallel updating we have to choose an updating
function A(n) such that C is of order 1/N. But suppose
that L sites are selected for comparison; then a total of
LK sites could change their fitness. If we demand that
all sites ¢ and their related neighbors {r;} are distinct,
we can extend Eq. (6) and obtain the master equation

pH%@=p%m—L<%wa%@

(K-
N

O (1/N?). (13)

”wwww+§ww0

This leads to the same steady-state distribution p(z) as
in Eq. (12). It is obvious that L < N/K, since no more
than N sites could change their fitness in one time step.
Hence we can weaken our restriction for the distribution
A(n) and conclude that C should only be of order 1/K,
i.e., independent of N.

For parallel updating the equilibrium is approached
faster than for sequential updating. This can be seen in
the following example. Suppose that at the beginning
of the process all fitnesses are uniformly distributed and
that at each update step only the smallest fitness is mu-
tated like for the BS model. We denote by R* the number
of species with fitness below 1/K. Hence, on the average,

we obtain R® = N/K and
K—-1\°
*~R%(1- 1/N 14
R R(l N_1)+0(/) (14)

fitnesses remain smaller than 1/K at an updating step
s for an asynchronous updating rule. If we assume that
the average number of update steps 5 needed to reach
equilibrium is at least of order O(IV), a rough estimation
leads to
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, N>K. (15)

Therefore the duration to reach equilibrium scales with
N 1n N for asynchronous updating and is reduced if K is
increased. Assume that in the case of parallel updating
LK < N species are mutated together and that the mu-
tated species do not interact. Then the mean number of
updating steps reduces to

ot
— e (1 - ﬂ’-f—v_—”) . (16)

Therefore S5y < Sasyn in the case 1 K L < N/K.

B In
Ssyn X

III. INTERPRETATION OF THE MODEL
AS A NEURAL NETWORK

In this section we map our mean-field model to a neural
model. To gain analytical results, we will choose a special
function for A(7;) and derive the steady-state distribu-
tion p(x). The result are valid for the BS model with
a real time scale. Table I explains the correspondence
between both models.

We define our neural network as follows. Consider N
interacting neurons. From physiology it is known that
cells in the central nervous system do not have a unique
resting potential. The actual depolarization depends on
the activity within a neuronal assembly, the potassium
and transmitter concentration in the outside of the cell,
and the metabolic exchange with the surroundings.

Now we make an enormous simplification of the com-
plicated microphysical processes by considering only two
variables for each neuron. One variable is the resting po-
tential d; and the second represents all mechanisms that
have a short-time impact on the membrane of the neu-
ron and do not lead to a long-time depolarization. We
describe these charge fluctuations on the membrane of
neuron i by a stochastic variable 7;. Furthermore, we
restrict the resting potential d; to vary between —1 and
0 and approximate d; by a constant that does not alter
until the neuron fires or the neuron receives input from
another neuron. If d; 4+ 7; exceeds the threshold, which
we choose without restrictions to be 0, neuron i fires and
many processes begin to restore the resting potential.

At this point we make the conjecture that the neu-

TABLE I. Comparison between the values in the evolution
model and the neural network model.

Neural model

resting potential d = —z
new resting potential —¢
charge fluctuation 7

Evolution model

fitnessz

new fitness £
environmental fluctuation 7
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Mean
Resting
Potential

FIG. 1. Distribution of the mean resting potential of a
neuronal assembly that is connected and updated according
to our model proposed in Sec. I. If the system reaches the
steady-state distribution, one observes a gap ~ 1/K, where
K — 1 is the connectivity within the network.

ron does not get the same depolarization as before spik-
ing, but instead a value —¢;, which is drawn randomly
from a distribution P(E,) For simplicity we assume that
P(¢&;) is a uniform distribution between 0 and 1, but this
will not affect our main results. Moreover, neuron 7 will
change the resting potentials of K — 1 other neurons to
which it is connected. The interaction is mediated via
transmitters that can excite or inhibit, i.e., depolarize or
hyperpolarize, other neurons. This process by itself is
quite complicated and we approximate the influence by
the assumption that the neighboring cells get new de-
polarizations d;, which we choose in the same way as
for the firing neuron. If we replace d; by —z; and & by
—& and choose annealed random neighbors of each fir-
ing neuron, we can apply all results derived in Sec. II.
Without restriction we consider only positive values of
7; because negative 7;’s will never fire a neuron. For a
suitable choice of A(7;) we can obtain a process where
it is much more likely that a neuron with a high resting
potential (near the threshold at 0) spikes than a neuron
with a low one (near —1). For concreteness we choose the

3
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FIG. 2. Results for sequential updating of our model. Both
the equilibrium distribution of the mean resting potential
p(—d) and the equilibrium distribution of the updated resting
potentials pupdate(—d) are Fermi functions with the threshold
at ~ 1/K. All curves are displayed with 8 = 12, N = 100,
and K = 3.
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3 i
o Simulation of p(-d)
+ Simulation of pupdate('d)
o ——Analytical results
ht 2
1]
Lol
Q
=]
o8 e e
i p
S
1]
. 1
S
L
o
0.0 0.2 0.4 0.6 0.8 1.0

Resting potential -4

FIG. 3. Analytical results and the simulations for p(—d)
and pupdate(—d) in the case of parallel updating. Like in the
asynchronous updating model, the simulations and the ana-
lytically predicted curves are in good agreement. The chosen
parameters are 3 = 17, N = 100, and K = 3.

Boltzmann distribution for thermal activated potentials

A(m;) = Be P, (17)
Inserting this into Eq. (12) yields (see Appendix B)
K/(K-1
p(z) ~ / ) for g>1. (18)

1+ exp[~B (@ — 1/K)]

In order to get the distribution of the resting poten-
tials p(d) one simply has to reflect the function p(z) at
the y axis. The mean-field equilibrium distribution of
the resting potentials of an interconnected assembly of
neurons self-organizes to a Fermi function (Figs. 1-3).
The results do not depend on the updating rule for the
neuronal assembly, as long as in the case of synchronous
update one chooses 3 > K to ensure that C < 1/K (or
B> KInN if we demand C < 1/N, respectively). From
the distribution one sees that only a few neurons have
depolarizations that are in the range [—1/K, 0], whereas
all others have resting potentials that are smaller than
—1/K. Hence there is a gap of width 1/K between
the threshold at 0 and nearly all resting potentials. Re-
member that K — 1 is the connectivity within the net-
work. The distribution of the updated resting potentials
Pupdate(Z) can also be calculated. We get

e P=p(z) _ K
C(B)  1+4ePU/K==)’

This is just a reversed Fermi function and therefore only a
few neurons with resting potentials d smaller than —1/K
are actually spiking, whereas almost all spiking neurons
have resting potentials between 0 and —1/K. Figures 2
and 3 show a comparison of the analytical and the sim-
ulated steady-state distributions for p(d) and pupdate(d)-

pupdate(x) = (19)

IV. DISTRIBUTION OF INTERSPIKE
INTERVALS

We derive the interspike interval (ISI) distribution for
our mean-field model driven by the stochastic process of

5277

Eq. (17). The ISIs directly correspond to the interevent
intervals in the BS model with a physical time scale as
proposed in Sec. II.

There are indications that neurons exhibit a high vari-
ability of their ISIs [11]. It is therefore interesting to
look at the interevent intervals of our simple model. If
the network consists of only one neuron, it will exhibit
essentially a renewal process. Every time the neuron is
updated, it starts with a new random value £ chosen from
the uniform distribution P(£). We have to calculate the
expectation value for the number of subsequent events in
which the noise 7 is smaller than £. Hence the distribu-
tion of the ISIs is given by

) |

€
(20)

Lg(r)=)_ <6 T ﬁ B —n*)9(n" — &)

which is the probability that the resting potential d = —¢
approaches the threshold at 0 after exactly 7 time steps.
After averaging over the stochastically independent noise
n* (see Appendix C) we obtain

Lo(r) = /d§ (1— eB8) " e, (21)

Keeping ¢ fixed, the integrand is just an exponential
function that is equal to the interevent distribution
of a discrete point process with the event probability

p = exp(—pB€). To solve the integral we substitute
z = 1—e~P¢ and obtain the ISI distribution of our neural
network model consisting of only one neuron
(1—e?)"
= . 22
Lo(r) = - (22)
For large 8 we can rewrite Eq. (22) and get
Lg() = (B7)"te™/T, (23)

with 7 o~ ef. In Fig. 4 a comparison between the analyt-

| 4 4
+ + +

« Simulation 1
* s, == Analytical Result

+

distribution Lg(1)

10° 10! 10? 10° 10*
lifetime t

FIG. 4. Analytical results and simulated distribution Ls(T)
of the time intervals between updates with parameters N =1
and B = 8.



5278
r o Simulation
100¢ &= Analytical Result ¥
e 1072
&
p 10°
.2
E 10*1
2 -5
% 10
101
107 : ; : ]
10° 10' 10 10° 10*
lifetime t©
FIG. 5. Analytical results and simulated distribution

L2o(7) of the time intervals between parallel updates with
parameters 8 = 20, N = 10, and K = 2.

ical result and a simulation is displayed. For one neuron
and hence K = 1 we can derive the equilibrium distribu-
tion from Eq. (10)

- ehe ~ g eBlz—1) 2

pla) = f o = BePCD, (24)
We summarize that one observes power-law-distributed
interspike intervals for isolated neurons in our model, i.e.,
neurons without interaction to other neurons. The power
law exhibits a finite-size scaling and is exact if the system
is in the frozen state at 8 — oo. In this limit we see
from Eq. (24) that the mean resting potential d = —=z
is located maximally away from the threshold and lies at
d=-1.

The results differ only slightly if we introduce interac-
tion in the neuronal assembly. If all neurons are updated
in parallel (see Fig. 5) we obtain roughly the same dis-
tribution as for only one neuron, but with a different
finite-size scaling. We found 7 ~ e#/X for large (3 (see
Appendix C) and hence the strict power-law behavior of
the ISI is not so far extended as in the case of a single
neuron. In both cases the power spectrum of the ISI
is flat, because S(f) ~ 1/fP. Following [12], the fractal
dimension D is defined by D = —1++, where v is the ex-
ponent of the ISI distribution Lg(7). In the limit 8 — oo
the exponent v tends to —1 and hence the fractal dimen-
sion to 0. For synchronous update we have to give a lower
bound for 3 to take care that the restriction stated above
(C £1/K or C <1/N)is fulfilled. We obtain 8 > K and
B > K InN/(K — 1), respectively. The crossover in the
distribution Lg(7) has a simple explanation. The vari-
able 7); is distributed in the interval [0, 00), whereas the
fitness is distributed in the interval [0,1]. Therefore the
state of maximal fitness of the system has only a limited
lifetime. If we choose the Boltzmann distribution con-
fined and normalized to the interval [0, 1], we observe no
crossover in the power-law distribution Lg(r). The 1/7
scaling within a finite range for the mean-field BS model
had been derived also in [13] without the finite-size effect.

Now we turn to the case of sequential update. The
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distribution of interevent intervals is

-1

Lg(t) = Z<§ (T -7 H Iz —nt)d(n" — m,.:))> ,

T! t=1
(25)

where z; denotes the fitness of the randomly chosen site
at time step ¢. Using the same procedure as for Eq. (20),
we obtain

o= (- )

Under the assumption that the distribution of the fit-
nesses is the same for all time steps, which is valid only
in the limit N — oo, we get

Lo(r) = /uzzp(m)e—ﬁf*c {/dmp(z) (1 —e—ﬂz)}
= C1(B) [C2(B)] T,

where C; and C; are constants. For finite N the distri-
bution p(z) fluctuates and the decay should differ from

(26)

T

T—1

(27)
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FIG. 6. (a) Simulated distributions of the time intervals
between sequential updates for several values of N. (b) The
exponential decay rates A converge for increasing system size
N to the analytical solution In(1/C:) (dashed line). All sim-
ulations are done with parameters 8 = 17 and K = 3.
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an exponential function. For N = 1 one gets the result of
Eq. (22) independent of the chosen updating rule. There-
fore, in the case of asynchronous updating for increasing
N we expect a transition from algebraic to exponential
decay in the interevent statistics. In Fig. 6(a) a simu-
lation with four different values of N is shown. In Fig.
6(b) the decay rate vs system size N is displayed. The
decay rate A approaches the limiting value In(1/C;) for
large N.

V. CONCLUSION AND SUMMARY

We have proposed a random-neighbor model that is for
a special choice of the updating function A(n) capable of
producing self-organized critical behavior with a finite-
size scaling. The critical state corresponds to a phase
transition at zero temperature. Indeed, in the limit 8 —
oo the system freezes and further dynamical changes are
unlikely to occur.

Nevertheless, our model has two interesting applica-
tions. It is possible to introduce a real time scale into
the BS model by assigning each species 7 a local updating
probability B(z!) depending on its actual fitness zf. In
our interpretation of the BS model, mutation will occur
only if z! < nf, where the stochastic variable n; models
all influences on species i that are not explicitly known.
It reveals that the mean-field BS model corresponds to
our model in the limit 8 — oo and by regarding only the
updating points on the real time scale.

Furthermore, we investigated a neural network with
random connections that is driven by weak noise. We
found a self-organized gap ~ 1/K between the neuronal
threshold and nearly all resting potentials. K — 1 is
the connectivity of the neurons. The interspike intervals
of the network obey a power-law distribution with the
mean-field exponent —1. The crossover in the interspike
statistics depends on a parameter 3, which controls the
updating or spike probability of each neuron.

All results derived for the neural network model apply
to the BS model also. Therefore Figs. 2 and 3 display
the mean equilibrium distribution of the fitness in an
ecosystem and the mean fitness of the updated species
respectively. The distributions differ only slightly from
the results in [6] as long B is large enough. This is not
astonishing because the local stochastic updating proce-
dure converges to the global updating rule used in the
BS model for 8 — oo. However, as mentioned above,
in this limit the ecology will be in a frozen state where
adaptation rarely occurs.

The main idea in [1] is the concept of punctuated equi-
librium. This means that the ecology remains in a stasis
for long times and gets interrupted by bursts of activity
in which species adapt rapidly. If we identify the stasis
periods with the interevent intervals, then Eq. (23) is the
desired distribution (see also Figs. 4 and 5). Therefore
the periods obey a power law and show finite-size scaling.

It is likely to find other applications of our mean-field
model proposed in Sec. II. Furthermore, it is possible
to apply different types of updating functions A(n) and
look for the steady-state distribution and the interevent
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statistics. It would be interesting to see for which choices
of the noise 7 the process will or will not generate a power
law in the interevent statistics.

APPENDIX A

In this appendix we derive the mean-field master equa-
tion for the reduced density p(z). We insert the integral
kernel Eq. (8) in Eq. (3) and assume that P (&) factor-
izes. We get

PHL(E) = / & K(&7)P4(F)

= PY(®) + <c: 1 Pites)

kg M;

f:) [] PEC :ck)> (A1)

k#i

—B(x;)P,

where we have introduced C{[B] = [ d:c' B(z')P}(z') and
used the definition of M; from Sec. () denotes now
the average over the randomly chosen site iand its K —1
annealed random neighbors {r;}.

Now we use the definition for the reduced density p*(z)
from Eq. (9) and obtain

> Pi(z)+K

kg M;

P@) = p() + <%C§

-+ B@P!(z) - x.C! ZP,:(m)>

k#i

= p(z) - 3B} (2) + 3"

1 t
—<Nc,. > Pk(m)>. (A2)
ke{r:}
For large N we get
1
p'*H(z) = p'(2) - ;B(@)p'(2)
K -1 K

where we have abbreviated C* = £ Y, Ct.
APPENDIX B

We calculate the equilibrium distribution p(z) for the
special choice A(n;) = Be " . The updating probability
of z is given by

B(z) = e =, (B1)
Integration of Eq. (18) yields
K [ 1

K1), “1+Deps D (B2)
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where D = (K_—ll)—C We substitute y = e A% and get
1D
=1. B3
ws | (2)

We write % /y (3 + ) as 1/y —1/($ + y) and integrate
Eq. (B3). We solve for D and obtain

1 - exp[-A (1 - 1/K)]

= S [A (1~ 1K)~ exp(—B) (B4)
We get for > 1
&= (K- 1)exp[f (1~ 1/K)). (B5)

After inserting 1/C into Eq. (12) we obtain the distribu-
tion displayed in Eq. (18).

APPENDIX C

We derive in this appendix the distribution of the time
intervals Lg(7) between two successive updates. For
N = 1 the result is exact; for large N we make an ap-
proximation that will be valid for large 3’s. The product
over the ¥ functions can only be 0 or 1. By using the
relation f(z) = f(0)(1 — z) + f(1) = for z € {0,1}, Eq.
(20) is transformed into

La(r) =) <5(T —7') 1:[ HE —nt)d(n™ — g)>
t=1 7€

!

-1

cx oo Tt o))
T t=1 e

(C1)

The last term of the sum is 0, because 7 is always larger
than 0. Hence we have to calculate

Lg(r) =) <5(T =) l:[ B —n")(n" — £)> .
t=1 7€

!

(C2)
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Since the noise 7 is stochastically independent, the aver-
age can be easily done:

Lo(r) = 3 a(r - r'><<v<s ), (9E - 7)),

x (9 —n"N) (90 - e>>n,>
13
= 2;5(7' -7') <(1 - 6_65)7,—1 e_65>£

- /dg (1— e P8 o0t = (1—e™) ‘;T_ﬁ)r.

This is the exact result for only one site. Let us now look
at what happens in the case of large N and synchronous
updating. From Eq. (19) we know the distribution of
It follows from the considerations for the case

(C3)

Zupdate-
N =1 that we have to replace the average over 15(6) =1
by the average over the distribution pypdate(z) in Eq.
(C3). We get

Lo(r) = 8(r =) [ dt pupance(€)

x(1-— e_ﬁf)‘r’—l e PE. (C4)

For large 8’s, Pupdate(Z) tends to a rectangle and can be
approximated by

Pupdate(§) ~ K9(1/K — ). (Cs)

We insert this into Eq. (C4) and obtain
1
Lg(r) = / dEKO(1/K — €) (1 — e=P¢) T e=ht
0

I/K r—1
- K/ de (1— e~PE)T " e PE
0

ey K
K

BT

—T/7
s

where 7 = eP/K,
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